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There are several mechanisms that allow plants to temporarily escape from
top-down control. One of them is trophic cascades triggered by top preda-
tors or pathogens. Another is satiation of consumers by mast seeding.
These two mechanisms have traditionally been studied in separation. How-
ever, their combined action may have a greater effect on plant release than
either process alone. In 2015, an outbreak of a disease (African swine
fever, ASF) caused a crash in wild boar (Sus scrofa) abundance in Białowieża
Primeval Forest. Wild boar are important consumers of acorns and are diffi-
cult to satiate relative to less mobile granivores. We hypothesized that the
joint action of the ASF outbreak and masting would enhance regeneration
of oaks (Quercus robur). Data from ungulate exclosures demonstrated that
ASF led to reduction in acorn predation. Tree seedling data indicated that
oak recruitment increased twofold relative to pre-epidemic period. Our
results showed that perturbations caused by wildlife disease travel through
food webs and influence forest dynamics. The outbreak of ASF acted syner-
gistically with masting and removed herbivore top-down control of oaks by
mobile consumers. This illustrates that the ASF epidemic that currently
occurs across Europe can have broad effects on forest dynamics.
1. Introduction
High interannual variability in seed production synchronized among plants
within populations, called masting or mast seeding, is a widespread reproduc-
tive strategy that evolved multiple times in the plant kingdom [1,2]. According
to a general consensus, masting allows successful regeneration by starving
specialist seed predators in years of seed scarcity and satiating them in years
of high seed production [1,3]. The starvation and satiation cycle works well
against small specialist seed consumers with restricted mobility, such as insects
or rodents whose population dynamics are largely affected by the masting
cycles [4,5]. By contrast, large, mobile and more generalist species can sustain
themselves on alternative food sources during low seed years, avoiding numeri-
cal reductions. Moreover, they move freely across habitats, which creates a risk
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of consumer attraction in periods with large-seed crops
[4,6,7]. Thus, abundant generalist and mobile seed predators
can resist predator satiation and jeopardize plant recruitment
[5]. Yet, in contrast with generally well-known satiation
dynamics in specialists seed consumers [5,8], the ecological
context under which masting can satiate generalist and
mobile seed predators is rarely studied.

Crashes in the abundance of generalist seed predators can
create periods when satiation is more likely, and seeds can
escape consumer control. For example, predation by carni-
vores can lead to declines in ungulates numbers, which can
cascade down to affect plant populations [9,10]. Recoloniza-
tion of the Banff National Park by wolves led to increased
willow and aspen recruitment [11]. Lethal infectious agents
can cause similar top-down trophic cascades [12,13]. For
example, anthrax epidemics drastically reduced impala
populations in northern Tanzania and narrow windows of
opportunity for tree establishment leading to even-aged
stands [12]. Thus, trophic cascades and mast seeding are
among the key mechanisms that allow temporary escape of
plants from herbivore control. These two mechanisms have
been traditionally studied separately. However, in certain
systems, only their combined effect may release plants from
top-down control by consumers.

Disease-induced population crashes of an important seed
consumer are recently being observed across Europe. African
swine fever (ASF) infects wild boar with lethality reaching
95–100%, leading to local population crashes [14,15]. Con-
cerns related to the ASF outbreaks are largely focused on
threats to the pork industry [16]. By contrast, the impact of
ASF-induced decline of wild boar abundance on ecosystem
functioning is largely unexplored. Nonetheless, the ecological
consequences can be substantial, as variation in wild boar
population size affects a range of ecosystem processes includ-
ing understory plant species composition, bird nest success
and tree recruitment [17–19]. Wild boar are also voracious
seed predators, especially of large seeds such as oak acorns
[20]. High acorn availability in mast years increases the repro-
ductive success of wild boar, but populations of this
omnivorous ungulate are less responsive to masting cycles
relative to seed consumers with more restricted mobility
and shorter generation time, such as rodents [21–23]. At the
same time, the high mobility of wild boar compared to
rodents allows aggregating in seed-rich sites [24,25], which
makes satiation less likely [4,26]. These traits suggest that
masting is unlikely to be successful in satiating wild boar
unless populations of this consumer crashes.

Here, we describe the synergistic effects of satiation by
masting and disease-related herbivore mortality on oak
recruitment in a temperate European forest system. We
used the ASF-caused population crash in wild boar in the
Białowieża Primeval Forest (Poland) as a natural experiment
to test whether periods of population declines of the faculta-
tive seed predator are necessary to allow consumer satiation
and increase recruitment of masting plants. Two types of con-
sumer exclusions allowed us to disentangle the role of
masting and ASF-induced wild boar decline on seed preda-
tion and the consequences for tree recruitment. In the first,
we separated seed predation of oak (Quercus robur) acorns
by small mammals (rodents) and large ungulates. In the
second, we monitored natural Q. robur recruitment with
and without access of large herbivores. Both experiments
covered the period from 2009 until 2020, which allowed us
to compare patterns of seed predation and sapling recruit-
ment pre- and post-ASF. We tested the following
predictions: (1) oak masting is effective at satiating small
mammals, (2) but not large mammals such as wild boar. (3)
Targeting high-seeding trees by foraging wild boar is respon-
sible for lack of satiation in pre-ASF period. Finally, (4) the
decline of wild boar, caused by the ASF epidemic, and associ-
ated decrease in seed predation rates translate into higher oak
recruitment.
2. Methods
(a) Study site
Our study site is in Białowieża Primeval Forest, one of the last
natural forests in Central Europe [27]. It is a large, generally flat,
continuous forest composed of mixed deciduous stands located
in eastern Poland and western Belarus (52°450N, 23°500 E). The
Białowieża Primeval Forest covers in total 1450 km2 (including
the Belarussian part of the forest) and consists of a mosaic of
forest types, dominated by deciduous oak–lime–hornbeam
forest. The climate is continental with mean temperature of
6.8°C and mean annual precipitation of 641 mm.
(b) Study species
Pedunculate oak, Q. robur, is a large broad-leaved tree, wide-
spread and often dominating in temperate forests of Europe.
Acorns are large (1–6 g) and consumed by a wide range of ani-
mals. Oak seed production is characterized by high interannual
variation and interindividual synchronization of seed production
[28,29]. Masting helps to satiate pre-dispersal, specialist seed pre-
dators such as weevils, but appears to be less effective at satiating
mobile consumers such as hares [30].

Eurasian wild boar, Sus scrofa, is a medium-sized ungulate
widely distributed across Europe and particularly abundant in
forested habitats [31]. Wild boar are omnivorous and opportunis-
tic in their food preferences. Their diet composition reflects local
and seasonal food availability with plant matter constituting
over 90% [32]. Oak acorns are attractive, energy-rich food items
which are targeted by wild boar [20]. Acorns can make up
most (up to 70%) of the wild boar diet during mast years
[33,34]. Trees masting cycles and winter severity are major natu-
ral factors shaping population dynamics of wild boar [35]. Wild
boar spatial requirements show high intraspecific variation, with
home range size varying between 4 and 60 km2 depending on
the habitat and averaging 4.2 km2 in our study area [24,36].
Daily distance travelled by wild boar in the study area averages
6.8 km [24].
(c) Wild boar population crash following African swine
fever outbreak

The first official cases of ASF in Białowieża Primeval Forest were
reported in March 2015 [15]. From being the most abundant
ungulate [35] with widespread occurrence across the Białowieża
forest landscape [10], the abundance of wild boar dropped by
approximately 90% within 1 year following ASF invasion [15].
A similar decline was reported by the Polish State Forest Office
(electronic supplementary material, figure S1). Wild boar culling
increased in the managed parts of the Białowieża forest (and not
in the Białowieża National Park) during the ASF outbreak as part
of national strategy to limit the spread of the disease. Nonethe-
less, the comparison between the two management regimes
showed that ca 90% of the decline in wild boar abundance was
associated with the ASF epidemic [15].
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(d) Experimental exclosures I: acorn production and
seed predation

We have monitored acorn production and predation at 29 oaks
for 12 years (2009–2020). At each tree, we installed a seed trap
(a cloth bag on a 50 × 50 × 50 cm stand) that excluded all seed
predators. We also installed an ungulate exclosure constructed
of wire mesh that allowed rodent access (50 × 50 × 50 cm, hole
size 10 cm) (electronic supplementary material, figure S2). Data
were collected every two weeks, from mid-August (when
acorns start to fall) to December (first heavy snow). At each
visit, we counted all acorns in the seed trap and in the ungulate
exclosure. Moreover, beneath each tree, we counted acorns on the
forest floor on 10 randomly placed 50 × 50 cm squares accessible
for all seed predators. Acorns counted in the seed trap were
removed at each visit, while those counted in the exclosure and
on the forest floor were left intact. Moreover, at each visit, we
recorded whether fresh wild boar rooting was present or
absent at the focal tree. From that data, we calculated tree-
level, annual seed predation rates by three sets of seed predators
(electronic supplementary material, table S1). Predation by all
post-dispersal seed predators was calculated as a difference
between acorn production (the number of acorns in the seed
trap under focal tree) and the number of acorns remaining on
the forest floor (the average number of acorns counted on the
floor during the last visit at the focal tree each year). Predation
by small mammals was calculated as a difference between the
number of acorns in the seed trap and the number of acorns in
the ungulate exclosure during the last visit at focal tree each
year. Predation by ungulates was calculated as a difference
between the number of acorns to which all post-dispersal seed
predators had an access and the number of acorns in the
exclosures.
(e) Experimental exclosures II: oak recruitment
We used 29 paired exclosure–control plots that were erected as
part of a long-term experiment in Białowieża National Park in
July 2000 [37]. Each exclosure consisted of a 2 m-high fence
with mesh size of ca 15 cm, surrounding 7 × 7 m sample plots.
This fence excluded all ungulate species (roe deer Capreolus
capreolus, red deer Cervus elaphus, moose Alces alces, European
bison Bison bonasus and wild boar) from entering, while allowing
all small mammals free access. Each exclosure had a paired con-
trol plot (unfenced) of 7 × 7 m as close as possible to the
exclosure, with comparable habitat characteristics, such as
canopy tree species composition, forest type, tree sapling density,
herbaceous vegetation cover and canopy openness. Control plots
were situated on average 20 m away from their paired exclosure
plot, with a minimum distance of 5 m. See Kuijper et al. [37] for a
more detailed description.

Surveys of oak recruitment were done four times: in 2011,
2013, 2015 and 2019. At each survey, oaks seedlings and saplings
were counted and classified into eight size classes (less than
10 cm, 11–25 cm, 26–50 cm, 51–75 cm, 76–100 cm, 101–130 cm,
131–200 cm, greater than 200 cm). A 50 cm buffer zone along
the borders of the sample plot was included, in which no
measurements were taken, to prevent potential fence effects. In
this study, we used oak counts from size classes up to 25 cm,
as this is the relevant class for oaks that recruited during the
post-ASF period (i.e. post 2015, surveyed in 2019).
( f ) Statistical analysis
We analysed data in R v. 4.0.3. We fitted models using the
glmmTMB package v. 1.0.2.1 [38]. Models were validated using
the DHARMa package v. 0.3.3.0 [39]. The validation included
testing for heterogeneity of model residuals, overdispersion,
zero-inflation and temporal autocorrelation. No significant
issues were detected.

To test whether oak masting decreased seed predation by
different groups of predators, we constructed three binomial-
family generalized linear mixed models (GLMMs). The three
models corresponded to the three groups of seed predators.
The details of calculation of predation for each group is provided
above (Methods: Acorn production and predation; electronic
supplementary material, table S1). In each model, proportion of
predated seeds under a given tree i in the year k was used as
the response variable, while seed production by tree i and
year k in the interaction term with ASF period were used as
predictors. We used period as a categorical variable (pre-ASF:
2009–2015, and post-ASF: 2016–2020), because of the clear-cut
difference in wild boar abundance between the periods (elec-
tronic supplementary material, figure S1). Each model included
tree ID as a random intercept. We did not include year as a
random factor because it would have restricted the assessment
of predation to variation in acorns within each year, while the
among-year variation is essential for the predator satiation in
masting [3].

To test whether targeting high-seeding trees by foraging wild
boar could be responsible for lack of satiation during the pre-ASF
period, we used binomial-family GLMM with the same structure
of random and fixed effects as the model above. We used the
proportion of visits at which rooting was present as a response.
The proportion was calculated as an average of fresh rooting
occurrences recorded during the resurveys at tree i and year k.

Finally, to estimate whether ASF created a window of oppor-
tunity for oak recruitment, we used Poisson family GLMM. Here
we used seedling counts (summed over two categories: less than
10 cm, 11–25 cm) at each plot j and year k as a response, and
period (pre-ASF versus post-ASF) in the interaction time with
treatment (exclosure versus control) as predictors. Random
intercepts included plot pair ID and year.
3. Results
Seed production in oaks exhibited fluctuations typical of mast
seeding trees (figure 1). Post-dispersal seed predation was
high, with annual means ranging from 71% to 90%. Ungu-
lates were a major seed predator and excluding them led to
predation rates ranging annually from 21% to 78% (figure 1).

Masting satiated rodents during pre- and post-ASF
period, while ungulates were satiated only during the post-
ASF period. During the pre-ASF period, seed predation by
all predators was not related to acorn production (β [s.e.] =
0.11 [0.07], z = 1.56, p = 0.12) (figure 2a). However, predation
by all seed predators decreased with increasing acorn pro-
duction during the post-ASF period (β [s.e.] =−0.11 [0.05],
z =−2.21, p = 0.03). This change in the relationship between
acorn production and total predation between periods was
driven by differences in ungulate satiation. Pre-ASF, seed
predation by ungulates was not related to acorn production
(β [s.e.] = 0.02 [0.08], z = 0.27, p = 0.79). However, post-ASF,
seed predation by ungulates decreased with increasing
acorn production (β [s.e.] =−0.15 [0.05], z =−2.77, p = 0.005).
By contrast, oak masting efficiently satiated seed predation
by rodents, both pre-ASF (β [s.e.] =−0.20 [0.06], z =−3.61,
p = 0.003) and post-ASF (β [s.e.] = −0.18 [0.05], z = −3.94,
p < 0.001; figure 2c).

Variation in seed production during the pre-ASF period,
but not post-ASF period, was associated with a strong
response of foraging wild boar to trees with the highest
acorn production. Pre-ASF, the proportion of visits at which
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rooting was recorded increased 2.8-fold with acorn pro-
duction (from 18% under low-seeding tree-years to 48%
under high-seeding tree-years) (β [s.e.] = 0.29 [0.05], z = 5.64,
p < 0.001) (figure 3). Post-ASF, the proportion of visits at
which rooting was recorded dropped to 7% and was no
longer correlated with acorn production (β [s.e.] = 0.01
[0.06], z = 0.01, p = 0.99).

Long-term oak recruitment was higher inside exclosures
(excluding wild boar and other ungulates), represented by
the higher number of oak saplings in all size classes including
the smallest size classes (figure 4a,b). The ASF-driven decline
in wild boar abundance and corresponding reduction in
acorn predation was associated with a peak increase in oak
recruitment. In control plots, i.e. where the wild boar could
access, the number of recruited oak seedlings increased two-
fold between pre- and post-ASF period (β [s.e.] = 0.71 [0.32],
z = 2.27, p = 0.02). At the same time, no such increase in oak
recruitment was recorded inside the exclosures, where
the change in wild boar abundance could not have an effect
(β [s.e.] = 0.46 [0.32], z = 1.48, p = 0.14) (figure 4a). Distribution
of size classes of seedlings in the control plots and in the exclo-
sures further supported a release of oak recruitment from the
top-down control by wild boar (figure 4b). A prominent peak
in number of small oaks (less than 10 cm and 11–25 cm)
occurred in the post-ASF control plots, whereas oak recruit-
ment in the exclosures was more evenly distributed. Results
are summarized in table 1.
4. Discussion
Bottom-up effects of masting on seed consumer populations
are assumed to be delayed and therefore to have negligible
effects on seed survival during mast years [26]. However,
the immediate behavioural response to increased seed avail-
ability by mobile, large consumers can jeopardize satiation
[5,26,40]. In accordance with this reasoning, our research
shows that masting is effective at satiating relatively less
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mobile rodents. At the same time, mobile wild boar mount
rapid behavioural response to increased seed availability,
which prevents their satiation. Following the dramatic crash
in wild boar abundance induced by the ASF epidemic, the
sparse population of wild boar was no longer able to target
high-seeding trees during mast years. Lack of the behavioural
response made consumer satiation possible, seed predation
declined and oak recruitment increased twofold. Thus, our
study provides evidence that a synergistic effect of bottom-
up resource pulse (masting) and a top-down impact by a
pathogen can be necessary to release trees from a control
by mobile, generalist consumers. We showed that a disease
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outbreak, via cascading interactions, enhances recruitment
of masting oaks and potentially leads to changes in forest
regeneration patterns.

We recorded a twofold increase in oak recruitment out-
side ungulate exclosures after the ASF epidemic had
reduced wild boar numbers by approximately 90% [15]. By
contrast, no such peak occurred within exclosures, where
seed predation by wild boar was excluded and therefore
did not show fluctuations in relation to the ASF outbreak.
Together, these results provide experimental evidence that
an epidemic, through top-down effects on generalist host
abundance, can indirectly affect regeneration of a masting



Table 1. Results summary.

prediction result

(1) oak masting is effective at

reducing predation by

specialist seed consumers

(small mammals)

masting reduced seed predation

from approximately 60–75%

to approximately 35%

(2) satiation of mobile and

generalist seed predators,

such as wild boar,

operates only after the

abundance of wild boar is

reduced by ASF

no satiation in pre-ASF period;

post-ASF masting reduced

seed predation by ungulates

by up to 15%

(3) targeting high-seeding

trees by foraging wild

boar is responsible for lack

of satiation in pre-ASF

period

rooting probability increased

with acorn production pre-

ASF (18% to 48%), but not

post-ASF

(4) wild boar decline together

with rodent satiation

creates window of

opportunity for oak

recruitment

oak recruitment increased

twofold post-ASF in control

plots, but not in ungulate

exclosures
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tree species. Epidemics are usually considered in the light of
their direct negative effects on hosts. However, just like pre-
dators, viruses or other infectious agents can also shape
ecosystem structure and function through their indirect
effects on plant communities [13,41]. Indeed, our study
implies that ASF can have broad ecological implications. In
addition to the consequences for oak recruitment, wild boar
predation is likely to have varying impact on recruitment
across different tree species, depending on the tree species
susceptibility to seed predation and herbivory. Such
species-specific variation in the response to wild boar popu-
lation reduction has the potential to affect forest community
structure, biodiversity and carbon sequestration through
changes in species dominance [42,43]. Considering the long-
evity of trees, the community-wide changes in recruitment
can be discernible for a long time after the disease outbreak
has passed, leaving a permanent footprint of the virus in
the forest structure [41,44]. The exact changes in forest regen-
eration trajectories represent an urgent area for future
investigations. One of the key questions is whether the
observed peak in oak regeneration overcomes the documen-
ted ungulate ‘herbivory trap’ that strongly limits tree
recruitment into taller size classes [37,45]. If such a satiation
of ungulate browsers occurs [46], then it is more likely that
the forests will bear the ASF marks for hundreds of years
to come. Another unresolved question is whether wild boar
mortality represented a brief window of opportunity for
tree regeneration, or a true regime shift, where ASF becomes
endemic and wild boar abundance remains at a low level,
leading to permanently change in tree regeneration patterns.

Theory predicts that satiation of highly mobile seed pre-
dators requires high interindividual synchrony of mast
seeding to counter the immediate aggregation of consumers
at high-seeding trees [4,5]. Our study implies that this may
not be sufficient to satiate this group of seed predators as in
our region Q. robur masting is well synchronized [47].
Among all major forest-forming species from the region,
interindividual synchrony in Q. robur was the highest [48].
Our study showed that satiation additionally required a
crash in the numbers of mobile predators, which allowed
high-seeding trees to avoid being targeted. We hypothesize
that the low abundance and resulting patchy distribution of
seed predators over the landscape is a key prerequisite for
satiation of mobile and generalist seed consumers [40].
Such patchy distribution can be created either by elevated
top-down control or by other factors. For example, coarse
woody debris can create patches with restricted consumer
access [49], allowing plants to escape from their large-seed
predators [20]. Another possibility is the presence of large
apex carnivores that create spatial variation in large herbivore
presence [10,50]. Thus, trees growing in proximity to numer-
ous woody debris or locations with frequent predator
presence can be more efficient at satiating large mobile seed
predators. Until now, behavioural responses of generalist
seed consumers to masting received little attention in studies
of seed predator satiation, despite both evidence and theory
implying their important role [4,5,8]. Incorporating temporal
(e.g. population crashes) or spatial (e.g. patchy distribution
over the landscape) variation in seed predator pressure into
predator satiation models appears to be a promising avenue
for future research.

One limitation to our study is that high-seeding years
occurred only twice during our 12-year-long study, with the
post-epidemic 2018 mast year being relatively larger com-
pared to 2012. Separation of the effect of epidemic from the
effect of differences in mast year size on seed predation is
therefore not possible. However, if the larger recruitment
was driven by differences in mast year sizes, but not by
changes in wild boar pressure, we would record similar pat-
terns within and outside exclosures, which was not the case.

In closing, our study has two general results. First, mast-
ing can be ineffective as an antipredator strategy for highly
mobile seed predators if these consumers are abundant, in
contrast with less mobile small predators. In multispecies
communities, periodical population crashes in these mobile
seed predators are then required to allow satiation during
mast years through preventing consumer aggregations at
high-seeding trees. Hence, only their joint action (masting
and population crash) can release plants from top-down con-
trol of their seed consumers. The second general insight is
experimental evidence that the virus can indirectly affect
forest regeneration dynamics. There are at least two major
implications that follow. First, more complete understanding
of regeneration dynamics in masting trees requires more
intense studies on facultative and mobile seed predators to
disentangle the context under which satiation and regener-
ation will occur. Second, our study shows a consequence of
the ongoing ASF epidemic in Europe that received little atten-
tion so far and point that ASF may indirectly affect long-term
tree species dynamics in forest systems. The exact direction
and consequences of these effects call for urgent research.
Data accessibility. The data associated with this study can be found at
https://doi.org/10.17605/OSF.IO/H672S.
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